一、问题描述
Python的向量运算可以使用Python运算逻辑实现,也可以用numpy包实现,这里通过编写相关代码进行演示,同时指出list列表的元素求和、合并的表达
二、向量相加的两种方法
这里设计两个向量相加的自定义函数,一个用python运行逻辑实现,一个使用numpy包实现
# 向量相加-Python
def pythonsum(n):
a = list(range(n))
b = list(range(n))
c = []
for i in range(len(a)):
a[i] = i ** 2
b[i] = i ** 3
c.append(a[i] + b[i])
return c
# 向量相加-NumPy
import numpy as np
def numpysum(n):
a = np.arange(n) ** 2
b = np.arange(n) ** 3
c = list(a + b)
return c
print("Python sum list is", pythonsum(10))
print("numpy sum list is", numpysum(10))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
运算结果是一样的
延伸,这里比较测试两种方法的向量运算速度
# 效率比较
import sys
from datetime import datetime
size = 100000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print("The last 2 elements of the sum", c[-2:])
print("PythonSum elapsed time in microseconds", delta.microseconds)
start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print("The last 2 elements of the sum", c[-2:])
print("NumPySum elapsed time in microseconds", delta.microseconds)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
运算结果,明显使用numpy包进行向量运算较快
三、示例中list求和及延伸
示例中使用到的list求和有在python普通运算中和numpy运算中的分别为
1.Python中a[i] + b[i]
a = [1, 2]
b = [3, 4]
c = []
for i in range(len(a)):
c.append(a[i] + b[i])
print(c)
- 1
- 2
- 3
- 4
- 5
- 6
结果[4, 6]
2.numpy中list(a + b)
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
c = list(a + b)
print(c)
- 1
- 2
- 3
- 4
- 5
- 6
结果[4, 6]
3.延伸
(1)合并,如果表达为a+b,则两个列表将合并
a = [1, 2]
b = [3, 4]
c = a + b
print(c)
- 1
- 2
- 3
- 4
结果为[1, 2, 3, 4]
(2)numpy的sum求和
import numpy as np
a = [1, 2]
b = [3, 4]
c = list(np.sum([a, b], axis = 0))
print(c)
- 1
- 2
- 3
- 4
- 5
- 6
结果[4, 6],其中的axis参数表示纵向求和
以上为个人整理总结的知识,如有遗漏或错误欢迎留言指出、点评,如要引用,请联系通知,未经允许谢绝转载。